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Abstract 8 

The main goal of this study was to produce a slope failure susceptibility map to support road 9 

designing and timber harvest planning. For this purpose, 15 data layers, including slope failure 10 

slope failure conditioning-factors, and a landslide inventory map were exploited to detect the 11 

most susceptible areas. Subsequently, slope failure susceptibility maps were produced using an 12 

adaptive neuro-fuzzy interface system (ANFIS) and GIS. The accuracy of the obtained maps was 13 

then evaluated by receiver operating characteristics (ROC). The ANFIS model with the input 14 

conditioning-factors of slope degree, slope aspect, altitude, and lithology performed the best 15 

among the various ANFIS models explored in the study. The predicted susceptibility levels were 16 

found to be in good agreement with the occurrences of pre-existing slope failures, and, hence, the 17 

produced maps are trustworthy for forestry activities and hazard mitigation planning. 18 

Keywords: ANFIS; Landslide susceptibility; Road construction; Timber harvesting 19 
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Construction and maintenance of road networks in mountainous forests are of challenging tasks 21 

because of geological and topographical complexities. The situation becomes more severe if a 22 

road network passes through a highly hazardous zone with respect to slope failure. Roadside 23 

slope failure is a common problem in the Caspian forest as naturally formed slopes are disturbed 24 

by road construction activities. The first attempts to road construction on steep terrains of the 25 

Caspian forest date back to the 1980s and early 1990s (Jaafari et al. 2014). History has shown 26 

that roads with improper terrain stability assessment in this area can cause significant slope 27 

failures and landslides. This trend is expected to continue in future; some estimates suggest that 28 

significant portions of the Caspian forest are prone to mass wasting and the forestry activities that 29 

regularly happening on this forest have the potential to accelerate landslide rates and magnitudes 30 

(IPBO, 2000). Therefore, landslide susceptibility maps are needed, particularly at the basin scale; 31 

they are a useful tool to make informed environmental decisions regarding the risks of proposed 32 

development (Guzzetti et al. 2006, Conforti et al. 2014).  33 

According to Varnes (1978), the term “landslide” describes a wide variety of processes that result 34 

in the downward and outward movement of slope-forming materials including rock, soil, 35 

artificial fill, or a combination of them. On the other hand, landslide susceptibility can be defined 36 

as the probability of spatial occurrence of landslides on the basis of the relationships between 37 

distribution and a set of conditioning factors (Guzzetti et al. 2005). Landslide susceptibility 38 

assessment allows for the identification of slopes for which failure probability is high and to 39 

consequently make prevention and protection decisions accordingly (Guillard and Zezere 2012). 40 

Landslide susceptibility assessment can be used in several scientific studies; estimation of the 41 

cost of road development and maintenance (Saha et al. 2005), pavement maintenance priority 42 
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map for highways (Pantha et al. 2010), and prediction of debris flow source areas (Blahut et al. 43 

2010).  44 

The effectiveness of slope stability studies around the world is apparent from the high prediction 45 

results of landslide susceptibility assessment reports from models such as logistic regression 46 

(e.g., Pourghasemi et al. 2013a), knowledge-based analytical hierarchy process (AHP) (e.g., 47 

Pourghasemi et al. 2013a, Pourghasemi et al. 2012a), fuzzy logic (e.g., Pourghasemi et al. 48 

2012a), artificial neural networks (ANNs) (e.g., Zare et al. 2013, Conforti et al. 2014), support 49 

vector machine (SVM) (e.g., Pradhan 2013, Pourghasemi et al. 2013b) and adaptive neuro-fuzzy 50 

interface system (ANFIS) (e.g., Pradhan 2013, Bui et al. 2012, Vahidnia et al. 2010).  51 

In the case of ANFIS, developed by Jang (1993), a little application to the landslide related 52 

studies has been reported (Bui et al. 2012). ANFIS is a multilayer feed-forward network in which 53 

each node performs a particular function on incoming signals and has a set of parameters 54 

pertaining to this node (Jang 1993). ANFIS combines fuzzy logic and ANNs by utilizing the 55 

mathematical properties of ANNs in tuning a rule-based fuzzy inference system that 56 

approximates how the human brain processes information (Akib et al. 2014).  57 

The main objective of an ANFIS model is to determine the optimum values of the equivalent 58 

fuzzy inference system parameters by applying a learning algorithm using input–output datasets. 59 

The parameter optimization is done in such a way during the training session that the error 60 

between the target and the actual output is minimized. Further information on ANFIS can be 61 

found in Jang (1993). 62 

Landslide susceptibility assessment involves handling, processing and interpreting a large 63 

amount of territorial data. Thus, Geographical Information Systems (GIS) have proved to be very 64 

useful in susceptibility assessment (Aleotti and Chowdhury 1999, Ayalew et al. 2005), as it 65 
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allows frequent updating of the database related to spatial distribution of the landslide events and 66 

their predisposing factors, as well as the susceptibility assessment procedures (Aleotti and 67 

Chowdhury 1999). In recent years, the use of GIS-based approaches to study landslides are 68 

intensively reported; GIS-based frequency ratio and index of entropy models (Jaafari et al., 2014; 69 

Pourghasemi et al. 2012b), and GIS-based multicriteria decision analysis (Feizizadeh and 70 

Blaschke 2013). Bui et al., (2012) used a GIS-based ANFIS model for LSM in Vietnam. Their 71 

results showed that ANFIS can be considered as a robust method for landslide modeling. Pradhan 72 

(2013), in a comparative study, addressed the ability of the decision tree, support vector machine 73 

and ANFIS models for LSM within a GIS environment. According to the results, all the models 74 

faired reasonably well, however, the success rate showed that ANFIS has better prediction 75 

capability among all models.  76 

In this study, we address the slope failure (landslide) susceptibility assessment in the Caspian 77 

forest using ANFIS within a GIS environment. The study is intended to tackle the main causal 78 

factors and to delimit the most susceptible zones for slope failure as a useful tool for the 79 

engineers involved in road construction and timber harvesting. The produced susceptibility maps 80 

are also compared with the known landslide locations according to the area under the curve 81 

(AUC) of receiver operator characteristic (ROC) curve in order to test the reliability and accuracy 82 

of the approach used. The susceptibility assessment presented in this study enable planners to 83 

avoid areas where forestry activities could cause slope failure and helps identify where field-84 

based assessments are necessary.  85 

 86 

2. Materials and methods 87 

2.1. Study area characteristics 88 
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Our study area is situated in Mazandaran Province, northern Iran. The study area having an 89 

approximate area of 52 km
2
 located between 36º29´10˝ N and 36º32´50˝ N latitude and 51º40´60˝ 90 

E and 51º48´20˝ E longitude (Fig. 1). The area is a part of the Educational and Experimental 91 

Forest of Tarbiat Modares University (EEFTMU) in the Caspian forest with slope variations 92 

between flat and >50°, and altitudes between 160 and 2190 m. Slope shape varies but frequently 93 

they represent convex and concave elements and are, mainly, incised by concave valleys. In this 94 

area, the stream network flows from the north-east to the south and south-west with a dendritic 95 

pattern. Given the proximity to the Caspian Sea, the study area enjoys a humid and mild climate 96 

with average annual precipitation between 414 to 879 mm. The average summer and winter 97 

temperature are recorded to be 22.5 and 10 ºC, respectively. The vegetation cover is quite 98 

continuous, formed by deciduous trees with dominant species of Fagus orientalis Lipsky, 99 

Carpinus betulus L., Acer velutinum Boiss, and Quercus castaneifolia C.A. Mey.  100 

The major portion of the study area is underlain by dolomitic limestone. Alborz fault, as the most 101 

important fault in the area, is a reverse fault that follow the west-east orientation and dip toward 102 

south. This fault is active, and most of earthquakes and landslides which occurred in Mazandaran 103 

Province are the result of displacements and the activity of this fault (Darvishzadeh 2004). 104 

Therefore, our study area, as one of the most susceptible areas to natural hazards and slope 105 

instability, is characterized by the prevalence of slides of shallow translational, deep translational, 106 

rotational subtypes, small debris flows and rock falls.  107 

 108 

2.2. Spatial database construction 109 

2.2.1. Landslide inventory map 110 
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Since landslide occurrences in the past and present are keys to future spatial prediction (Guzzetti 111 

et al. 1999), a landslide inventory map is a pre-requisite for such a study (Bui et al. 2012). The 112 

landslide inventory map of our study area was compiled by inheriting the landslide locations 113 

from aerial photographs interpretation and field-based inspection. In the aerial photographs, 114 

historical landslides could be mapped by using evidences such as breaks in the forest canopy, 115 

denudes vegetation on the slope, bare soil, and other typical geomorphic characteristics (Pradhan 116 

2013, Jaafari et al. 2014). Given the abundant over- and understory vegetation in the study area, 117 

we also conducted multiple field surveys and observations to produce a more detailed and 118 

reliable landslide inventory map.  119 

 120 

2.2.2. Slope failure (landslide) conditioning factors 121 

The recognition and mapping of an appropriate set of instability factors related to slope failures 122 

require a previous information of main causes of landslides (Guzzetti et al. 1999). In the present 123 

study, the conditioning factors were selected among the most commonly used in literature to 124 

assessment slope failures susceptibility (Table 1). The significance of these factors in landsliding 125 

has explicitly been presented in Jaafari et al. (2014). Incorporation into the GIS was via a 20-m 126 

Digital Elevation Model (DEM) of the study area, and the slope degree, slope aspect, altitude, 127 

plan curvature, TWI, SPI, STI layers were created from the DEM using ArcGIS and SAGA GIS. 128 

Distance to faults and distance to streams were computed using spatial analyst tool of ArcGIS. 129 

The geological map prepared by Geological Survey of Iran (GSI) on 1:100,000 scale was used 130 

for the present study. The rainfall map was prepared using the mean annual precipitate data from 131 

the meteorological station for the study area over last 20 years. Extensive investigations by the 132 
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Tarbiat Modares University on the study area have been the major source of data associated with 133 

NDVI, forest plant community, forest canopy, and timber volume used in the present study. 134 

Since raster dataset has enriched capability for spatial analysis, all factor layers were converted 135 

into raster format. Given the extent of the study area and the landslide distribution, grid cells 136 

having a spatial resolution of 20 × 20 m (Ozdemir 2011, Bui et al. 2012, Kayastha et al. 2012, 137 

Ozdemir and Altural 2013, Jaafari et al. 2014) were selected as the mapping unit, which was 138 

small enough to capture the spatial characteristics of landslide susceptibility and large enough to 139 

reduce computing complexity. 140 

In this study, we also carried out a series of tests by considering different input datasets from the 141 

landslide conditioning factors. The purpose of selecting various datasets was to explore the 142 

influence of parameter enrichments on the performance of the ANFIS model and, additionally 143 

importance of the added parameter on the landslide assessments (Pradhan 2013). From table 2 144 

can be seen that dataset-1 includes maximum number of landslide conditioning factors, and it 145 

continues to narrow down to dataset-5 (Table 2).  146 

 147 

2.3. Preparation of training and validation dataset 148 

In landslide modeling, the landslide inventory map need to be split into two subsets for training 149 

and validation. Without the splitting, it would not be possible to validate the results (Jaafari et al. 150 

2014). In this study, the inventory map was randomly divided into two datasets. Part 1 that 151 

contains 70% of the data (73 landslides) used in the training phase of the five ANFIS models. 152 

Part 2 is a validation dataset with remaining 30% of the data (31 landslides) for the validation of 153 

the models and to estimate their accuracy. All of the 73 landslide locations in the part 1 dataset 154 

denoting the presence of landslides were assigned the value of 1. The same number of points 155 
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denoting the absence of landslide were randomly sampled from the landslide-free area and 156 

assigned a value of 0. Values for the 15 landslide conditioning factors were then extracted to 157 

build a training dataset (Bui et al. 2012, Pradhan 2013). This dataset contains a total of 146 158 

points, with one target variable denoting the landslide presence/absence and the 15 landslide 159 

conditioning factors. This dataset was further randomly partitioned into three subsets including: 160 

training, testing and checking to develop the ANFIS models (Ghajar et al. 2012). Training set 161 

was used to adjust the connections weights, membership functions and model parameters. Testing 162 

set was used to evaluate the trained ANFIS performances and generalizations power. Checking 163 

set was used to check the performance of the model through the training process and stop the 164 

training to avoid over-fitting. This method of data division is recommended to control over-fitting 165 

of the models (Jang et al. 1997). In this study, approximately 70% (102 points) of the extracted 166 

database was randomly selected as the training dataset, 15% (22 points) as testing dataset, and the 167 

remaining 15% (22 points) as the checking dataset. In this study, we used a commercially 168 

available canned software, called Neuframe (Neusciences 2000), to select the datasets at random.  169 

Due to the different scales of input variables, and in order to increase the speed and accuracy of 170 

data processing, input data need to be normalized in the range of 0 and1 before using them in the 171 

ANFIS model (Ghajar et al. 2012). For this purpose, the extracted values from landslide 172 

conditioning factors were normalized using the normalization formula as follows: 173 

min

max min

X Xi
X n

X X





                                                                                                                                      (1) 174 

A part of normalized data used as training, testing and checking the ANFIS model is shown in 175 

table 3. 176 

 177 
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2.4. Development the ANFIS models for the spatial prediction of slope failure 178 

In the light of suggestion by Pradhan (2013), we employed type-3 ANFIS model (Takagi and 179 

Sugeno 1983) to produce susceptibility maps of our study area. In this type of ANFIS model, the 180 

output of each rule is a linear combination of input variables added by a constant term. The final 181 

output is the weighted average of each rule’s output. In this study, we constructed a total of five 182 

ANFIS models to produce susceptibility maps of the study area. To implement ANFIS, 183 

MATLAB programming language version R2011a was used. GENFIS1 and GENFIS2 functions 184 

are two available methods that have been widely used for generating the initial fuzzy inference 185 

system (FIS). The GENFIS1 generates an initial Sugeno-type FIS for ANFIS training using a grid 186 

partition, and the GENFIS2 uses a subtractive clustering generates to generate the initial Sugeno-187 

type FIS. As proposed by Chui (1997), due to the large number of input variables considered in 188 

our study, GENFIS2 function was used to generate the initial FIS for ANFIS training by first 189 

applying subtractive clustering on the data. GENFIS2 accomplished this by extracting a set of 190 

rules that models the data behavior.  191 

After constructing the Sugeno-type FIS for our five ANFIS models, each model is trained by 192 

considering 200 epochs. Finally, the output data obtained from the models were converted to GIS 193 

grid data to create the slope failure susceptibility maps. 194 

 195 

2.5. Validation and comparison of susceptibility maps 196 

Prediction modeling does not have a scientific significance without computing the validity of the 197 

results. In this study, the susceptibility assessment results were tested using known landslide 198 

locations. Testing was performed by comparing the known landslide location data with the 199 

landslide susceptibility map. In order to validate the results of the susceptibility assessment, AUC 200 
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of ROC curve (Bui et al. 2012, Pourghasemi et al. 2012a, Pradhan 2013, Pourghasemi et al. 201 

2013a, Jaafari et al. 2014) was used. The ROC curve is a graphical representation of the trade-off 202 

between the false-negative and false-positive rates for every possible cutoff value.  203 

The area under the ROC curve (AUC) characterizes the quality of a forecast system by describing 204 

the system’s ability to anticipate the correct occurrence or non-occurrence of pre-defined 205 

‘‘events’’. The best method has a curve with the largest AUC; the AUC varies between 0 and 1, 206 

where 1 indicates perfect prediction, while 0.5 indicates random prediction. The larger the ROC 207 

value is, the better the compatibility between dependent and independent variables. The 208 

quantitative-qualitative relationship between AUC and prediction accuracy can be classified as 209 

follows: 0.9–1, excellent; 0.8–0.9, very good; 0.7–0.8, good; 0.6–0.7, average; and 0.5–0.6, poor 210 

(Yesilnacar 2005). 211 

 212 

2. Results and discussion 213 

A total of 103 landslides that occurred during recent years were detected and mapped through the 214 

aerial photographs interpretation and field surveys within 52 km
2
 to assemble a database to 215 

evaluate the spatial distribution of slope failures in the study area (Fig. 1). Shallow landslides 216 

were dominant, but large deep-seated landslides also observed in the study area.  217 

The susceptibility maps produced by the five ANFIS models are shown in Fig. 2a–e. According 218 

to Van Westen et al. (2006) the susceptibility classes, categorized with such terms as ‘‘very 219 

high’’, ‘‘high’’, ‘‘moderate’’, ‘‘low’’ and ‘‘very low’’ risk, should be defined on the experience 220 

of the expert with support from sufficient models and depend on the likelihood that a slide will 221 

occur and the consequences that such an event would have for the elements at risk. In our study, 222 

each susceptibility map is assigned a set of symbol (I to V) to indicate the likelihood of slope 223 
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failure (landslide) initiation. A detailed interpretation of susceptibility classification is presented 224 

in table 4. From this table, it is seen that the susceptibility classes I, II, III, IV and V range from 225 

very low to very high susceptible, providing a relative ranking of the likelihood of a landslide 226 

occurring after road construction or timber harvesting. It is worth noting that the assignment and 227 

interpretation of the susceptibility classes is subjective and specifically reflects forest 228 

management considerations that are applied by the managers who make decision about 229 

management purposes. Therefore, other interpretations can also be added to the susceptibility 230 

symbol, if necessary. These may include: soil erosion potential, risk of sediment delivery to 231 

streams, and the potential for landslide debris to enter streams. 232 

Five ANFIS models developed herein offer the possibility to compare the landslide distribution 233 

map with each conditioning factor. When ROC curves of these five models were considered 234 

together, their overall performances are found to be close to each other. From figures 4 and 5 can 235 

be seen that the most successful ANFIS model is model 5, which has much less attributes than 236 

model 1–4. According to obtained AUC, model 5 has slightly higher prediction performance 237 

(75.75) than the other models (Fig. 4). Therefore, we can conclude here that altitude, slope angle, 238 

aspect, and lithology are most suitable conditioning factors for landslide susceptibility mapping 239 

in the study area. After ANFIS model 5, which produced the best results, ANFIS model 4 was 240 

determined as the second successful model from the viewpoint of AUC criteria (72.48) (Fig. 3 241 

and 4). According to Remondo et al. (2003a, b), the best landslide susceptibility models can be 242 

produced only with the digital elevation models (DEM)-derived factors. They concluded that 243 

some of the landslide conditioning factors, such as the lithology and the land cover (vegetation), 244 

improve predictions only slightly. Other factors, such as regolith thickness, do not improve the 245 

predictions at all, probably because the variables are not represented accurately enough. 246 



12 

 

However, a different result was reported by Pradhan (2013), who found that the increment on the 247 

number of conditioning factors has a positive impact on the overall prediction performance of 248 

landslide susceptibility assessment using ANFIS. Given that there is no common guiding 249 

principle for selecting landslide conditioning factors (Ayalew et al. 2005), the results are quite 250 

different according to various researchers and study areas. 251 

Our results suggest that the high and very high susceptibility classes cover more than 50 % of the 252 

study area. Due to the dynamic nature of precipitation, deforestation and anthropogenic activities 253 

(e.g. a road with steep cuts is constructed in a slope which was considered as low susceptible 254 

before), the presented landslide susceptibility maps are subjected to change. Hence, these map 255 

needs to be updated continuously depending on the dynamics of changes in the area. 256 

There is always a trade-off between the quality of the data and the cost/resources involved and 257 

the reliability of the landslide susceptibility assessment. In order to achieve the best quality/cost 258 

relation, it is very important to invest in landslide inventory databases (Van Westen et al. 2008).  259 

 260 

4. Conclusion 261 

This study analyzed the potential of slope failure in Iranian mountain forest using ANFIS models 262 

within a GIS environment. The outcome of GIS-based ANFIS application was a set of 263 

susceptibility maps, which could be used to predict the stability of slopes from 15 basic factors 264 

including slope degree, slope aspect, altitude, lithology, rainfall, distance to faults, distance to 265 

streams, plan curvature, TWI, SPI, STI, NDVI, forest plant community, forest canopy, and 266 

timber volume. Our findings suggest that all of the five ANFIS models have performed 267 

reasonably well with more than AUC > 70 prediction performance. Therefore, they are 268 

trustworthy for forestry activities and hazard mitigation planning. However, the best model can 269 
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be produced only through using altitude, slope angle, aspect, and lithology. When the purpose of 270 

the study was considered, forest engineers can select one of these models according to their 271 

circumstances in order to produce susceptibility maps. 272 

The susceptibility assessment of slope failure represent an essential resource of knowledge of our 273 

study area for its capacity for supporting individual uses or combination of uses, such as road 274 

construction and timber harvesting. Managers and foresters can then make decisions and prepare 275 

prescriptions that will have highly predictable results for producing sustainable products, 276 

maintaining site quality, and substantially reducing risk of any adverse impacts. Unfortunately, 277 

such studies are far from common in the Caspian forest, implying great difficulty for comparative 278 

analyses. It is therefore worthwhile to apply the method used in this study to different 279 

environmental settings.  280 

 281 
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